Vector orthogonal polynomials and matrix series
نویسندگان
چکیده
منابع مشابه
On Orthogonal Matrix Polynomials
In this paper we deal with orthogonal matrix polynomials. First of all, we establish some basic notations and results we need later. A matrix polynomial P is a matrix whose entries are polynomials, or, equivalently, a combination P(t) = A 0 +A 1 t+ +A n t n , where A 0 ; ; A n are numerical matrices (the size of all the matrices which appear in this paper is N N). A positive deenite matrix of m...
متن کاملFourier Series of Orthogonal Polynomials
It follows from Bateman [4] page 213 after setting = 1 2 . It can also be found with slight modi cation in Bateman [5] page122. However we are not aware of any reference where explicit formulas for the Fourier coef cients for Gegenbauer, Jacobi, Laguerre and Hermite polynomials can be found. In this article we use known formulas for the connection coef cients relating an arbitrary orthogonal po...
متن کامل2 Rectangular Matrix Orthogonal Polynomials
Classical orthogonal polynomials and matrix polynomials being orthogonal with respect to some Hermitean positive deenite matrix of measures share several properties , e.g., three term recurrencies, Christooel{Darboux formulas; there are connections to the triangular decomposition of the (inverse) moment matrix and to eigenvalue{problems for the banded matrix of recurrence coeecients. Also, a co...
متن کاملVector Orthogonal Polynomials and Least Squares Approximation
We describe an algorithm for complex discrete least squares approximation, which turns out to be very efficient when function values are prescribed in points on the real axis or on the unit circle. In the case of polynomial approximation, this reduces to algorithms proposed by Rutishauser, Gragg, Harrod, Reichel, Ammar and others. The underlying reason for efficiency is the existence of a recur...
متن کاملThe Matrix Ansatz, Orthogonal Polynomials, and Permutations
In this paper we outline a Matrix Ansatz approach to some problems of combinatorial enumeration. The idea is that many interesting quantities can be expressed in terms of products of matrices, where the matrices obey certain relations. We illustrate this approach with applications to moments of orthogonal polynomials, permutations, signed permutations, and tableaux. To Dennis Stanton with admir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1993
ISSN: 0377-0427
DOI: 10.1016/0377-0427(93)90045-d